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Abstract: In this paper a strong form of fuzzy generalized closed set, viz., fg∗s-
closed set is introduced and studied. With the help of this newly defined set, a
new type of idempotent operator is introduced. Using this operator as a basic tool,
here we introduce and study fg∗s-open and fg∗s-closed functions the class of which
are strictly larger than that of fuzzy open (resp, fg-open) and fuzzy closed (resp.,
fg-closed) functions respectively and weaker than that of fgδ-open and fgδ-closed
functions respectively. In the last section we introduce fg∗s-T2-space the class of
which is strictly larger than that of fuzzy T2-space and some applications of fg∗s-
open function are established here.
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1. Introduction
In 1965, L. A. Zadeh introduced fuzzy set [15] and in 1968, C. L. Chang intro-

duced fuzzy topology [5]. Afterwards, many mathematicians have engaged them-
selves to introduce and study different types of fuzzy open-like sets. In 1981, K.
K. Azad introduced fuzzy regular open and fuzzy semiopen set [1] and in [7], Gan-
guly and Saha introduced fuzzy δ-open set. In [2, 3], fuzzy generalized version of
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closed set, viz., fg-closed set is introduced. Afterwards, several types of generalized
version of fuzzy closed sets are introduced and studied. In [4], fgδ-closed set is
introduced. Here we introduce fg∗s-closed set, the class of which is strictly larger
than that of fg-closed set, but smaller than fgδ-closed set.
Lot of work has been done on quasi-coincidence and different weaker forms of closed
and open sets. In this context, we have to mention [6, 11, 12, 13].

2. Preliminaries
Throughout this paper (X, τ) or simply by X we shall mean a fuzzy topological

space (fts, for short) in the sense of Chang [5]. In [15], L. A. Zadeh introduced
fuzzy set as follows: A fuzzy set A is a function from a non-empty set X into the
closed interval I = [0, 1], i.e., A ∈ IX . The support [15] of a fuzzy set A, denoted
by suppA and is defined by suppA = {x ∈ X : A(x) ̸= 0}. The fuzzy set with
the singleton support {x} ⊆ X and the value t (0 < t ≤ 1) will be denoted by
xt. 0X and 1X are the constant fuzzy sets taking values 0 and 1 respectively in
X. The complement of a fuzzy set A in X is denoted by 1X \ A and is defined
by (1X \ A)(x) = 1 − A(x), for each x ∈ X [15]. For any two fuzzy sets A,B
in X, A ≤ B means A(x) ≤ B(x), for all x ∈ X [15] while AqB means A is
quasi-coincident (q-coincident, for short) with B, if there exists x ∈ X such that
A(x) + B(x) > 1 [10]. The negation of these two statements will be denoted by
A ̸≤ B and A ̸ qB respectively. For a fuzzy point xt and a fuzzy set A, xt ∈ A
means A(x) ≥ t, i.e., xt ≤ A. For a fuzzy set A, clA and intA will stand for fuzzy
closure [5] and fuzzy interior [5] of A respectively. A fuzzy set A is called a fuzzy
neighbourhood (fuzzy nbd, for short) of a fuzzy point xα if there exists a fuzzy
open set U in X such that xα ∈ U ≤ A [10]. If, in addition, A is fuzzy open, then
A is called fuzzy open nbd of xα [10]. A fuzzy set A is called a fuzzy quasi neigh-
bourhood (fuzzy q-nbd, for short) [10] of a fuzzy point xα in an fts X if there is a
fuzzy open set U in X such that xαqU ≤ A. If, in addition, A is fuzzy open, then
A is called fuzzy open q-nbd [10] of xα. A fuzzy set A in X is called fuzzy regular
open [1] (resp., fuzzy semiopen [1]) if A = int(clA) (resp., A ≤ cl(intA)). The
complement of a fuzzy semiopen set is called fuzzy semiclosed [1]. The intersection
(resp., union) of all fuzzy semiclosed (resp.,fuzzy semiopen) sets containing (resp.,
contained in) a fuzzy set A is called fuzzy semiclosure [1] (resp., fuzzy semiinterior
[1]) of A, to be denoted by sclA (resp., sintA). The fuzzy δ-interior [7] of a fuzzy
set A in X are defined as : δintA =

∨
{W : W is fuzzy regular open in X,W ≤ A}.

The collection of all fuzzy semiopen (resp., fuzzy semiclosed) sets in an fts (X, τ)
is denoted by FSO(X) (resp., FSC(X)).
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2. fg∗s-Closed Set: Some Properties

In this section a new type of generalized version of fuzzy closed set is introduced
which is in between fg-closed and fgδ-closed sets.

Definition 3.1. Let (X, τ) be an fts and A ∈ IX . Then A is called fg∗s-closed set
in X if clsintA ≤ U whenever A ≤ U ∈ τ .

The complement of fg∗s-closed set is called fg∗s-open set in X.
The collection of all fg∗s-closed (resp., fg∗s-open) sets in an fts X is denoted by
FG∗SC(X) (resp., FG∗SO(X)).

Remark 3.2. Union and intersection of two fg∗s-closed sets may not be so, as it
seen from the following examples.

Example 3.3. Let X = {a, b}, τ = {0X , 1X , A,B} where A(a) = 0.5, A(b) =
0.4, B(a) = B(b) = 0.3. Then (X, τ) is an fts. Here FSO(X) = {0X , 1X , U}
where B ≤ U ≤ 1X \ A. Now consider two fuzzy sets C and D defined by C(a) =
0.5, C(b) = 0, D(a) = 0, D(b) = 0.3. Then clearly C,D ∈ FG∗SC(X). Let
E = C

∨
D. Then E(a) = 0.5, E(b) = 0.3. Now E ≤ A ∈ τ . But clsintE =

1X \ A ̸≤ A ⇒ E is not an fg∗s-closed set in (X, τ).

Example 3.4. Let X = {a, b}, τ = {0X , 1X , A,B} where A(a) = 0.5, A(b) =
0.6, B(a) = 0.3, B(b) = 0.2. Then (X, τ) is an fts. Here FSO(X) = {0X , 1X , U, V }
where A ≤ U ≤ 1X \ B, B ≤ V ≤ 1X \ A. Now consider two fuzzy sets C and D
defined by C(a) = 0.6, C(b) = 0.2, D(a) = 0.3, D(b) = 0.7. Clearly C and D are
fg∗s-closed sets in (X, τ). Let E = C

∧
D. Then E(a) = 0.3, E(b) = 0.2. Now

E ≤ B ∈ τ . But clsintE = 1X \ A ̸≤ B ⇒ E is not an fg∗s-closed set in (X, τ).

Note 3.5. So we can conclude that the set of all fg∗s-open sets in an fts (X, τ)
does not form a fuzzy topology.

Theorem 3.6. Let (X, τ) be an fts and A,B ∈ IX . If A ≤ B ≤ clsintA and A is
fg∗s-closed set in X, then B is also fg∗s-closed set in X.
Proof. Let U ∈ τ be such that B ≤ U . Then by hypothesis, A ≤ B ≤ U . Since A
is fg∗s-closed set in X, clsintA ≤ U . Then clsintA ≤ clsintB ≤ clsint(clsintA) ≤
clsintA ≤ U ⇒ B is fg∗s-closed set in X.

Theorem 3.7. Let (X, τ) be an fts and A,B ∈ IX . If intsclA ≤ B ≤ A and A is
fg∗s-open set in X, then B is also fg∗s-open set in X.
Proof. intsclA ≤ B ≤ A ⇒ 1X \ A ≤ 1X \ B ≤ 1X \ intsclA = clsint(1X \ A)
where 1X \ A is fg∗s-closed set in X. By Theorem 3.6, 1X \ B is fg∗s-closed set
in X ⇒ B is fg∗s-open set in X.

Theorem 3.8. Let (X, τ) be an fts and A ∈ IX . Then A is fg∗s-open set in X
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iff K ≤ intsclA whenever K ≤ A and K is fuzzy closed set in (X, τ).
Proof. Let A(∈ IX) be fg∗s-open set in X and K ≤ A where K is fuzzy closed
set in (X, τ). Then 1X \ A ≤ 1X \ K where 1X \ A is fg∗s-closed set in X and
1X \ K is fuzzy open set in (X, τ). By hypothesis, clsint(1X \ A) ≤ 1X \ K ⇒
1X \ intsclA ≤ 1X \K ⇒ K ≤ intsclA.

Conversely, let K ≤ intsclA whenever K ≤ A, K ∈ τ c. Then 1X \A ≤ 1X \K
where 1X \K ∈ τ . By hypothesis, 1X \intsclA ≤ 1X \K ⇒ clsint(1X \A) ≤ 1X \K
⇒ 1X \ A is fg∗s-closed set in X ⇒ A is fg∗s-open set in X.

Theorem 3.9. Let (X, τ) be an fts and A,B ∈ IX . If A is fg∗s-closed set in X
and B is fuzzy closed set in (X, τ) with A ̸ qB. Then clsintA ̸ qB.
Proof. By hypothesis, A ̸ qB ⇒ A ≤ 1X \ B ∈ τ ⇒ clsintA ≤ 1X \ B ⇒
clsintA ̸ qB.

Remark 3.10. The converse of Theorem 3.9 may not be true, in general, as it is
seen from the following example.

Example 3.11. Consider Example 3.4. Here E is not fg∗s-closed set in X. Also
E ̸ q(1X \ A) and clsintE(= 1X \ A) ̸ q(1X \ A).

Now we recall the following definitions from [2, 3, 4] for ready references.

Definition 3.12. Let (X, τ) be an fts and A ∈ IX . Then A is called
(i) fg-closed set [2, 3] if clA ≤ U whenever A ≤ U ∈ τ ,
(ii) fgδ-closed set [4] if clδintA ≤ U whenever A ≤ U ∈ τ .

Remark 3.13. It is clear from definitions that fg-closed set is fg∗s-closed set
which implies fgδ-closed set. But reverse implications are not necessarily true
follow from the next examples.

Example 3.14. fg∗s-closed set ̸⇒ fg-closed set
Let X = {a, b}, τ = {0X , 1X , A} where A(a) = 0.5, A(b) = 0.6. Then (X, τ) is an
fts. Consider the fuzzy set B defined by B(a) = B(b) = 0.5. Then B ≤ A ∈ τ .
But clB = 1X ̸≤ A ⇒ B is not fg-closed set in X. But clsintB = 0X ≤ A ⇒ B is
an fg∗s-closed set in X.

Example 3.15. fgδ-closed set ̸⇒ fg∗s-closed set
Consider Example 3.3. Here E is not fg∗s-closed set in X. Now clδintE = 0X ≤
A ⇒ E is fgδ-closed set in X.

Definition 3.16. An fts (X, τ) is called fTg∗s-space (resp. fgTδ-space [4]) if every
fg∗s-closed (resp., fgδ-closed) set in X is fuzzy closed set in X.

Note 3.17. In fTg∗s-space, every fg∗s-closed set is fg-closed set and in fgTδ-
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space, every fuzzy fgδ-closed set is fg∗s-closed.
Now we introduce a new type of generalized version of neighbourhood system

in an fts.

Definition 3.18. Let (X, τ) be an fts and xα, a fuzzy point in X. A fuzzy set A is
called fg∗s-neighbourhood (fg∗s-nbd, for short) of xα, if there exists an fg∗s-open
set U in X such that xα ∈ U ≤ A. If, in addition, A is fg∗s-open set in X, then
A is called an fg∗s-open nbd of xα.

Definition 3.19. Let (X, τ) be an fts and xα, a fuzzy point in X. A fuzzy set
A is called fg∗s-quasi neighbourhood (fg∗s-q-nbd, for short) of xα if there is an
fg∗s-open set U in X such that xαqU ≤ A. If, in addition, A is fg∗s-open set in
X, then A is called an fg∗s-open q-nbd of xα.

Note 3.20. (i) It is clear from definitions that every fg∗s-open set is an fg∗s-open
nbd of each of its points. But every fg∗s-nbd of a fuzzy point xα may not be an
fg∗s-open set containing xα follows from the following example.
(ii) Also every fuzzy open nbd (resp., fuzzy open q-nbd) of a fuzzy point xα is an
fg∗s-open nbd (resp., fg∗s-open q-nbd) of xα. But the converse is not necessarily
true, in general, as it seen from the following example.

Example 3.21. Consider Example 3.14. Here B is fg∗s-open nbd of the fuzzy
point a0.4. But B is not fuzzy open nbd of a0.4. Again B is fg∗s-open q-nbd of the
fuzzy point a0.6, but not a fuzzy open q-nbd of a0.6.

Example 3.22. Consider Example 3.3 and the fuzzy set F defined by F (a) =
F (b) = 0.5 and the fuzzy point a0.4. Clearly F is fg∗s-closed as well as fg∗s-open
set with a0.4 ∈ F ≤ 1X \E ̸∈ FG∗SO(X). So 1X \E is an fg∗s-nbd of a0.4 though
it is not an fg∗s-open nbd of a0.4.

4. fg∗s-Open and fg∗s-Closed Functions

In this section we first introduce fg∗s-closure operator which is seem to be an
idempotent operator. Using this operator as a basic tool, we introduce and charac-
terize fg∗s-open and fg∗s-closed functions, the classes of which are strictly larger
than that of fuzzy open [14] and fuzzy closed [14] functions respectively.

Definition 4.1. Let (X, τ) be an fts and A ∈ IX . Then fg∗s-closure and fg∗s-
interior of A, denoted by fg∗scl(A) and fg∗sint(A), are defined as follows:

fg∗scl(A) =
∧
{F : A ≤ F, F is fg∗s-closed set in X},

fg∗sint(A) =
∨
{G : G ≤ A,G is fg∗s-open set in X}.

Remark 4.2. It is clear from definition that for any A ∈ IX , A ≤ fg∗scl(A). If
A is fg∗s-closed set in an fts X, then A = fg∗scl(A). Similarly, fg∗sint(A) ≤ A.
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If A is fg∗s-open set in an fts X, then A = fg∗sint(A). Again by Remark 3.2, we
conclude that fg∗scl(A) (resp., fg∗sint(A)) may not be fg∗s-closed (resp., fg∗s-
open) set in an fts X.

Theorem 4.3. Let (X, τ) be an fts and A ∈ IX . Then for a fuzzy point xt in X,
xt ∈ fg∗scl(A) if and only if every fg∗s-open q-nbd U of xt, UqA.
Proof. Let xt ∈ fg∗scl(A) for any fuzzy set A in an fts X and F be any fg∗s-open
q-nbd of xt. Then xtqF ⇒ xt ̸∈ 1X \ F which is fg∗s-closed set in X. Then by
Definition 4.1, A ̸≤ 1X \F ⇒ there exists y ∈ X such that A(y) > 1−F (y) ⇒ AqF .

Conversely, let for every fg∗s-open q-nbd F of xt, FqA. If possible, let xt ̸∈
fg∗scl(A). Then by Definition 4.1, there exists an fg∗s-closed set U in X with
A ≤ U , xt ̸∈ U . Then xtq(1X \ U) which being fg∗s-open set in X is fg∗s-open
q-nbd of xt. By assumption, (1X \ U)qA ⇒ (1X \ A)qA, a contradiction.

Theorem 4.4. Let (X, τ) be an fts and A,B ∈ IX . Then the following statements
are true:
(i) fg∗scl(0X) = 0X ,
(ii) fg∗scl(1X) = 1X ,
(iii) A ≤ B ⇒ fg∗scl(A) ≤ fg∗scl(B),
(iv) fg∗scl(A

∨
B) = fg∗scl(A)

∨
fg∗scl(B),

(v) fg∗scl(A ∧B) ≤ fg∗scl(A) ∧ fg∗scl(B), equality does not hold, in general,
(vi) fg∗scl(fg∗scl(A)) = fg∗scl(A).
Proof. (i), (ii) and (iii) are obvious.
(iv) From (iii), fg∗scl(A)

∨
fg∗scl(B) ≤ fg∗scl(A

∨
B).

To prove the converse, let xα ∈ fg∗scl(A
∨
B). Then by Theorem 4.3, for any

fg∗s-open set U in X with xαqU , Uq(A
∨

B) ⇒ there exists y ∈ X such that
U(y) + max{A(y), B(y)} > 1 ⇒ either U(y) + A(y) > 1 or U(y) + B(y) >
1 ⇒ either UqA or UqB ⇒ either xα ∈ fg∗scl(A) or xα ∈ fg∗scl(B) ⇒ xα ∈
fg∗scl(A)

∨
fg∗scl(B).

(v) Follows from (iii) and equality does not hold, in general follows from Example
3.4.
(vi) Since A ≤ fg∗scl(A), for any A ∈ IX , fg∗scl(A) ≤ fg∗scl(fg∗scl(A)) (by
(iii)).

Conversely, let xα ∈ fg∗scl(fg∗scl(A)) = fg∗scl(B) where B = fg∗scl(A).
Let U be any fg∗s-open set in X with xαqU . Then UqB implies that there
exists y ∈ X such that U(y) + B(y) > 1. Let B(y) = t. Then ytqU and
yt ∈ B = fg∗scl(A) ⇒ UqA ⇒ xα ∈ fg∗scl(A) ⇒ fg∗scl(fg∗scl(A)) ≤ fg∗scl(A).
Consequently, fg∗scl(fg∗scl(A)) = fg∗scl(A).

Theorem 4.5. Let (X, τ) be an fts and A ∈ IX . Then the following statements
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hold:
(i) fg∗scl(1X \ A) = 1X \ fg∗sint(A)
(ii) fg∗sint(1X \ A) = 1X \ fg∗scl(A).
Proof. (i). Let xt ∈ fg∗scl(1X \A) for a fuzzy set A in an fts (X, τ). If possible, let
xt ̸∈ 1X \ fg∗sint(A). Then 1− (fg∗sint(A))(x) < t ⇒ [fg∗sint(A)](x) + t > 1 ⇒
fg∗sint(A)qxt ⇒ there exists at least one fg∗s-open set F ≤ A with xtqF ⇒ xtqA.
As xt ∈ fg∗scl(1X \ A), F q(1X \ A) ⇒ Aq(1X \ A), a contradiction. Hence

fg∗scl(1X \ A) ≤ 1X \ fg∗sint(A)...(1)

Conversely, let xt ∈ 1X \ fg∗sint(A). Then 1 − [(fg∗sint(A)](x) ≥ t ⇒ xt

̸ q(fg∗sint(A)) ⇒ xt ̸ qF for every fg∗s-open set F contained in A ... (2).
Let U be any fg∗s-closed set in X such that 1X \A ≤ U . Then 1X \ U ≤ A. Now
1X \ U is fg∗s-open set in X contained in A. By (2), xt ̸ q(1X \ U) ⇒ xt ∈ U ⇒
xt ∈ fg∗scl(1X \ A) and so

1X \ fg∗sint(A) ≤ fg∗scl(1X \ A)...(3).

Combining (1) and (3), (i) follows.
(ii) Putting 1X \ A for A in (i), we get fg∗scl(A) = 1X \ fg∗sint(1X \ A) ⇒
fg∗sint(1X \ A) = 1X \ fg∗scl(A).

Let us now recall the following definitions from [3, 4, 14] for ready references.

Definition 4.6. A function f : X → Y is called
(i) fuzzy open [14] (resp., fuzzy closed [14]) if f(U) is fuzzy open (resp., fuzzy closed)
set in Y for every fuzzy open (resp., fuzzy closed) set U in X,
(ii) fg-open [3] (fg-closed [3]) if f(U) is fg-open (resp., fg-closed) set in Y for
every fuzzy open (resp., fuzzy closed) set U in X,
(iii) fgδ-open [4] (fgδ-closed [4]) if f(U) is fgδ-open (resp., fgδ-closed) in Y for
every fuzzy open (resp., fuzzy closed) set U in X.

Now we introduce the following concept.

Definition 4.7. A function h : X → Y is called fg∗s-open function if h(U) is
fg∗s-open set in Y for every fuzzy open set U in X.

Remark 4.8. It is clear from definitions that
(i) fuzzy open function is fg∗s-open function,
(ii) fg-open function is fg∗s-open function,
(iii) fg∗s-open function is fgδ-open function.
But the converses need not be true, in general, as it is evidenced from the following
examples.
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Example 4.9. (i) fg∗s-open function ̸⇒ fuzzy open function, fg-open function
Let X = {a, b}, τ1 = {0X , 1X , B}, τ2 = {0X , 1X , A} where A(a) = 0.5, A(b) =
0.6, B(a) = B(b) = 0.5. Then (X, τ1) and (X, τ2) are fts’s. Consider the iden-
tity function i : (X, τ1) → (X, τ2). Now B ∈ τ1, i(B) = B ≤ A ∈ τ2. Now
clτ2sintτ2B = 0X < A ⇒ B ∈ FG∗SC(X, τ2) ⇒ 1X \ B = B ∈ FG∗SO(X, τ2) ⇒ i
is an fg∗s-open function. But B ̸∈ τ2 ⇒ i is not fuzzy open function. Also
clτ2B = 1X ̸≤ A ⇒ B is not fg-closed as well as fg-open set in (X, τ2) ⇒ i is not
an fg-open function.

(ii) fgδ-open function ̸⇒ fg∗s-open function
Let X = {a, b}, τ1 = {0X , 1X , E}, τ2 = {0X , 1X , A,B} where A(a) = 0.5, A(b) =
0.4, B(a) = B(b) = 0.3, E(a) = 0.5, E(b) = 0.7. Then (X, τ1) and (X, τ2) are fts’s.
Consider the identity function i : (X, τ1) → (X, τ2). Here E ∈ τ1, i(E) = E. Now
1X \E ∈ τ c1 , i(1X \E) = 1X \E < A ∈ τ2. But clτ2sintτ2(1X \E) = 1X \A ̸≤ A ⇒
1X \ E ̸∈ FG∗SC(X, τ2) ⇒ E ̸∈ FG∗SO(X, τ2) ⇒ i is not fg∗s-open function.
Now clτ2δintτ2(1X \E) = 0X < A ⇒ 1X \E is fgδ-closed and so E is fgδ-open set
in (X, τ2) ⇒ i is an fgδ-open function.

Theorem 4.10. For a bijective function h : X → Y , the following statements are
equivalent:
(i) h is fg∗s-open,
(ii) h(intA) ≤ fg∗sint(h(A)), for all A ∈ IX ,
(iii) for each fuzzy point xα in X and each fuzzy open set U in X containing xα,
there exists an fg∗s-open set V in Y containing h(xα) such that V ≤ h(U).
Proof. (i) ⇒ (ii). Let A ∈ IX . Then intA is a fuzzy open set in X. By (i),
h(intA) is fg∗s-open set in Y . Since h(intA) ≤ h(A) and fg∗sint(h(A)) is the
union of all fg∗s-open sets contained in h(A), we have h(intA) ≤ fg∗sint(h(A)).
(ii)⇒ (i). Let U be any fuzzy open set inX. Then h(U) = h(intU) ≤ fg∗sint(h(U))
(by (ii)) ⇒ h(U) is fg∗s-open set in Y ⇒ h is fg∗s-open function.
(ii) ⇒ (iii). Let xα be a fuzzy point in X, and U , a fuzzy open set in X such that
xα ∈ U . Then h(xα) ∈ h(U) = h(intU) ≤ fg∗sint(h(U)) (by (ii)). Then h(U) is
fg∗s-open set in Y . Let V = h(U). Then h(xα) ∈ V and V ≤ h(U).
(iii) ⇒ (i). Let U be any fuzzy open set in X and yα, any fuzzy point in h(U),
i.e., yα ∈ h(U). Then there exists unique x ∈ X such that h(x) = y (as h is
bijective). Then [h(U)](y) ≥ α ⇒ U(h−1(y)) ≥ α ⇒ U(x) ≥ α ⇒ xα ∈ U . By
(iii), there exists fg∗s-open set V in Y such that h(xα) ∈ V and V ≤ h(U). Then
h(xα) ∈ V = fg∗sint(V ) ≤ fg∗sint(h(U)). Since yα is taken arbitrarily and h(U)
is the union of all fuzzy points in h(U), h(U) ≤ fg∗sint(h(U)) ⇒ h(U) is fg∗s-
open set in Y ⇒ h is an fg∗s-open function.

Theorem 4.11. If h : X → Y is fg∗s-open, bijective function, then the following
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statements are true:
(i) for each fuzzy point xα in X and each fuzzy open q-nbd U of xα in X, there
exists an fg∗s-open q-nbd V of h(xα) in Y such that V ≤ h(U),
(ii) h−1(fg∗scl(B)) ≤ cl(h−1(B)), for all B ∈ IY .
Proof. (i) Let xα be a fuzzy point in X and U be any fuzzy open q-nbd of xα

in X. Then xαqU = intU ⇒ h(xα)qh(intU) ≤ fg∗sint(h(U)) (by Theorem 4.10
(i)⇒(ii)) implies that there exists at least one fg∗s-open q-nbd V of h(xα) in Y
with V ≤ h(U).
(ii) Let xα be any fuzzy point in X such that xα ̸∈ cl(h−1(B)) for any B ∈ IY .
Then there exists a fuzzy open q-nbd U of xα in X such that U ̸ qh−1(B). Now

h(xα)qh(U)...(1)

where h(U) is fg∗s-open set in Y . Now h−1(B) ≤ 1X \ U which is a fuzzy closed
set in X ⇒ B ≤ h(1X \ U) (as h is injective) ≤ 1Y \ h(U) ⇒ B ̸ qh(U). Let V =
1Y \ h(U). Then B ≤ V which is fg∗s-closed set in Y . We claim that h(xα) ̸∈ V .
If possible, let h(xα) ∈ V = 1Y \h(U). Then 1− [h(U)](h(x)) ≥ α ⇒ h(U) ̸ qh(xα),
contradicting (1). So h(xα) ̸∈ V ⇒ h(xα) ̸∈ fg∗scl(B) ⇒ xα ̸∈ h−1(fg∗scl(B)) ⇒
h−1(fg∗scl(B)) ≤ cl(h−1(B)).

Theorem 4.12. An injective function h : X → Y is fg∗s-open if and only if for
each B ∈ IY and F , a fuzzy closed set in X with h−1(B) ≤ F , there exists an
fg∗s-closed set V in Y such that B ≤ V and h−1(V ) ≤ F .
Proof. Let B ∈ IY and F , a fuzzy closed set in X with h−1(B) ≤ F . Then
1X \ h−1(B) ≥ 1X \ F where 1X \ F is a fuzzy open set in X ⇒ h(1X \ F ) ≤
h(1X \ h−1(B)) ≤ 1Y \ B (as h is injective) where h(1X \ F ) is an fg∗s-open set
in Y . Let V = 1Y \ h(1X \ F ). Then V is fg∗s-closed set in Y such that B ≤ V .
Now h−1(V ) = h−1(1Y \ h(1X \ F )) = 1X \ h−1(h(1X \ F )) ≤ F .

Conversely, let F be a fuzzy open set inX. Then 1X\F is a fuzzy closed set inX.
We have to show that h(F ) is an fg∗s-open set in Y . Now h−1(1Y \h(F )) ≤ 1X \F
(as h is injective). By assumption, there exists an fg∗s-closed set V in Y such that

1Y \ h(F ) ≤ V...(1)

and h−1(V ) ≤ 1X \ F . Therefore, F ≤ 1X \ h−1(V ) implies that

h(F ) ≤ h(1X \ h−1(V )) ≤ 1Y \ V...(2)

(as h is injective). Combining (1) and (2), h(F ) = 1Y \ V which is an fg∗s-open
set in Y . Hence h is fg∗s-open function.

Definition 4.13. A function h : X → Y is called fg∗s-closed function if h(A) is
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fg∗s-closed set in Y for each fuzzy closed set A in X.

Remark 4.14. It is clear from definitions that
(i) fuzzy closed function is fg∗s-closed function,
(ii) fg-closed function is fg∗s-closed function,
(iii) fg∗s-closed function is fgδ-closed function.
But the converses need not be true, as it is evidenced from the following examples.

Example 4.15. (i) fg∗s-closed function ̸⇒ fuzzy closed function, fg-closed func-
tion.
Consider Example 4.9(i). Here i is not fuzzy closed function as well as fg-closed
function, as B = 1X \ B ∈ τ c1 , i(B) ̸∈ τ c2 and clτ2B ̸≤ A. But as B ∈ τ c1 ⇒ i(B) ∈
FG∗SC(X, τ2), i is fg

∗s-closed function.
(ii) fgδ-closed function ̸⇒ fg∗s-closed function

Consider Example 4.9(ii). Here 1X\E ∈ τ c1 and i(1X\E) = 1X\E ̸∈ FG∗SC(X, τ2)
⇒ i is not fg∗s-closed function. But 1X \ E is fgδ-closed set in (X, τ2) ⇒ i fgδ-
closed function.

Theorem 4.16. A bijective function h : X → Y is fg∗s-closed function if and
only if fg∗scl(h(A)) ≤ h(clA), for all A ∈ IX .
Proof. Let us suppose that h : X → Y be an fg∗s-closed function and A ∈ IX .
Then h(cl(A)) is fg∗s-closed set in Y . Since h(A) ≤ h(clA) and fg∗scl(h(A)) is the
intersection of all fg∗s-closed sets in Y containing h(A), we have fg∗scl(h(A)) ≤
h(clA).

Conversely, let for any A ∈ IX , fg∗scl(h(A)) ≤ h(clA). Let U be any fuzzy
closed set in X. Then h(U) = h(clU) ≥ fg∗scl(h(U)) ⇒ h(U) is an fg∗s-closed
set in Y ⇒ h is an fg∗s-closed function.

Theorem 4.17. If h : X → Y is an fg∗s-closed bijective function, then the fol-
lowing statements hold:
(i) for each fuzzy point xα in X and each fuzzy closed set U in X with xα ̸ qU ,
there exists an fg∗s-closed set V in Y with h(xα) ̸ qV such that V ≥ h(U),
(ii) h−1(fg∗sint(B)) ≥ int(h−1(B)), for all B ∈ IY .
Proof. (i). Let xα be a fuzzy point in X and U be any fuzzy closed set in X with
xα ̸ qU = clU ⇒ h(xα) ̸ qh(clU) ≥ fg∗scl(h(U)) (by Theorem 4.16) ⇒ h(xα) ̸ qV
for some fg∗s-closed set V in Y with V ≥ h(U).
(ii). Let B ∈ IY and xα be any fuzzy point in X such that xα ∈ int(h−1(B)).
Then there exists a fuzzy open set U in X with U ≤ h−1(B) such that xα ∈ U .
Then 1X \ U ≥ 1X \ h−1(B) ⇒ h(1X \ U) ≥ h(1X \ h−1(B)) where h(1X \ U) is an
fg∗s-closed set in Y . Let V = 1Y \h(1X \U). Then V is an fg∗s-open set in Y and
V = 1Y \ h(1X \ U) ≤ 1Y \ h(1X \ h−1(B)) ≤ 1Y \ (1Y \B) = B (as h is injective).
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Now U(x) ≥ α ⇒ xα ̸ q(1X \U) ⇒ h(xα) ̸ qh(1X \U) ⇒ h(xα) ≤ 1Y \ h(1X \U) =
V ⇒ h(xα) ∈ V = fg∗sint(V ) ≤ fg∗sint(B) ⇒ xα ∈ h−1(fg∗sint(B)). Since xα is
taken arbitrarily, int(h−1(B)) ≤ h−1(fg∗sint(B)), for all B ∈ IY .

Remark 4.18. Composition of two fg∗s-closed (resp., fg∗s-open) functions need
not be so, as it is evidenced from the following example.

Example 4.19. Let X = {a, b}, τ1 = {0X , 1X , E}, τ2 = {0X , 1X}, τ3 = {0X ,
1X , A,B} where A(a) = 0.5, A(b) = 0.4, B(a) = B(b) = 0.3, E(a) = 0.5, E(b) =
0.7. Then (X, τ1), (X, τ2) and (X, τ3) are fts’s. Consider two identity functions
i1 : (X, τ1) → (X, τ2) and i2 : (X, τ2) → (X, τ3). Clearly i1 and i2 are fg∗s-closed
as well as fg∗s-open functions. Let i3 = i2 ◦ i1 : (X, τ1) → (X, τ3). We claim
that i3 is not fg∗s-closed function. Now E ∈ τ1, 1X \ E ∈ τ c1 , (i2 ◦ i1)(1X \ E) =
1X \ E ≤ A ∈ τ3. But clτ3sintτ3(1X \ E) = 1X \ A ̸≤ A ⇒ 1X \ E is not
an fg∗s-closed set in (X, τ3) ⇒ i2 ◦ i1 is not an fg∗s-closed function. Again as
1X \E ̸∈ FG∗SC(X, τ3) ⇒ E ̸∈ FG∗SO(X, τ3) ⇒ i2 ◦ i1 is not fg∗s-open function.

Theorem 4.20. If h1 : X → Y is fuzzy closed (resp., fuzzy open) function and
h2 : Y → Z is fg∗s-closed (resp., fg∗s-open) function, then h2 ◦ h1 : X → Z is
fg∗s-closed (resp., fg∗s-open) function.
Proof. Obvious.

5. fg∗s-T2 Space and Some Applications of fg∗s-Open Function
In this section we first introduce a new type of separation axiom and then some

applications of fg∗s-open function are established.
We first recall the definition and theorem from [8, 9] for ready references.

Definition 5.1. [8] An fts (X, τ) is called fuzzy T2-space if for any two distinct
fuzzy points xα and yβ; when x ̸= y, there exist fuzzy open sets U1, U2, V1, V2 such
that xα ∈ U1, yβqV1, U1 ̸ qV1 and xαqU2, yβ ∈ V2, U2 ̸ qV2; when x = y and α < β
(say), there exist fuzzy open sets U and V in X such that xα ∈ U, yβqV and U ̸ qV .

Theorem 5.2. [9] An fts (X, τ) is fuzzy T2-space if and only if for any two distinct
fuzzy points xα and yβ in X; when x ̸= y, there exist fuzzy open sets U, V in X
such that xαqU , yβqV and U ̸ qV ; when x = y and α < β (say), xα has a fuzzy
open nbd U and yβ has a fuzzy open q-nbd V such that U ̸ qV .

Now we introduce the following concept.

Definition 5.3. An fts (X, τ) is called fg∗s-T2-Space if for any two distinct fuzzy
points xα and yβ in X; when x ̸= y, there exist fg∗s-open sets U, V in X such that
xαqU , yβqV and U ̸ qV ; when x = y and α < β (say), xα has an fg∗s-open nbd U
and yβ has an fg∗s-open q-nbd V such that U ̸ qV .

Remark 5.4. Clearly fuzzy T2-space is fg∗s-T2-space, but the converse is not nec-
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essarily true, follows from the following example.

Example 5.5. Let X = {a, b}, τ = {0X , 1X}. Then (X, τ) is an fts. Clearly (X, τ)
is not a fuzzy T2-space. Here every fuzzy set in (X, τ) is fg∗s-open set in (X, τ).
Clearly it is fg∗s-T2-space.

Theorem 5.6. If a bijective function h : X → Y is fg∗s-open function from a
fuzzy T2-space X onto an fts Y , then Y is fg∗s-T2-space.
Proof. Let zα and wβ be two fuzzy points in Y . Since h is bijective, there exist
unique x, y in X such that h(x) = z, h(y) = w, i.e., h(xα) = zα, h(yβ) = wβ.
Case I. Suppose z ̸= w. Then x ̸= y. Since X is fuzzy T2-space, there ex-
ist fuzzy open sets U, V in X such that xαqU, yβqV and U ̸ qV . Then h(xα)(=
zα)qh(U), h(yβ)(= wβ)qV and h(U) ̸ qh(V ) where h(U) and h(V ) are fg∗s-open
sets in Y as h is an fg∗s-open function [Indeed, h(U)qh(V ) ⇒ there exists t ∈ Y
such that [h(U)](t) + [h(V )](t) > 1 ⇒ U(h−1(t)) + V (h−1(t)) > 1 where h−1(t) ∈
X ⇒ UqV , a contradiction].
Case II. Suppose z = w and α < β (say). Then x = y and α < β. Since X is
fuzzy T2-space, there exist a fuzzy open nbd U of xα and a fuzzy open q-nbd V
of yβ such that U ̸ qV . Then h(xα) ∈ h(U), h(yβ)qh(V ) and h(U) ̸ qh(V ) where
h(U), h(V ) are fg∗s-open sets in Y , i.e., h(U) is an fg∗s-open nbd of zα, h(V ) is
an fg∗s-open q-nbd of wβ and h(U) ̸ qh(V ). Consequently, Y is fg∗s-T2-space.

In a similarly manner we can prove the following theorem easily.

Theorem 5.7. If a bijective function h : X → Y is fg∗s-open function from a
fuzzy T2-space X onto an fTg∗s-space Y , then Y is fuzzy T2-space.

6. Conclusion
Introducing a new type of generalized version of fuzzy closed set, here we study

a new type of fuzzy open and fuzzy closed-like functions. Our next approach is to
define some sort of fuzzy continuous-like functions and also new type of fuzzy sepa-
ration axioms and fuzzy compactness. The applications of these types of functions
are to be established.
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