South East Asian J. of Mathematics and Mathematical Sciences Vol. 20, No. 2 (2024), pp. 401-414

ISSN (Print): 0972-7752

A STRONG FORM OF GENERALIZED CLOSED SET IN A FUZZY TOPOLOGICAL SPACE

Anjana Bhattacharyya

Department of Mathematics, Victoria Institution (College), 78 B, A.P.C. Road, Kolkata - 700009, INDIA

E-mail: anjanabhattacharyya@hotmail.com

(Received: May 22, 2024 Accepted: Aug. 27, 2024 Published: Aug. 30, 2024)

Abstract: In this paper a strong form of fuzzy generalized closed set, viz., fg^*s -closed set is introduced and studied. With the help of this newly defined set, a new type of idempotent operator is introduced. Using this operator as a basic tool, here we introduce and study fg^*s -open and fg^*s -closed functions the class of which are strictly larger than that of fuzzy open (resp., fg-open) and fuzzy closed (resp., fg-closed) functions respectively and weaker than that of $fg\delta$ -open and $fg\delta$ -closed functions respectively. In the last section we introduce fg^*s - T_2 -space the class of which is strictly larger than that of fuzzy T_2 -space and some applications of fg^*s -open function are established here.

Keywords and Phrases: Fuzzy semiopen set, fuzzy regular open set, fuzzy δ -open set, fg-closed set, $fg\delta$ -closed set, fg^*s -closed set, fg^*s -open function, fg^*s -closed function.

2020 Mathematics Subject Classification: 54A40, 03E72.

1. Introduction

In 1965, L. A. Zadeh introduced fuzzy set [15] and in 1968, C. L. Chang introduced fuzzy topology [5]. Afterwards, many mathematicians have engaged themselves to introduce and study different types of fuzzy open-like sets. In 1981, K. K. Azad introduced fuzzy regular open and fuzzy semiopen set [1] and in [7], Ganguly and Saha introduced fuzzy δ -open set. In [2, 3], fuzzy generalized version of

closed set, viz., fg-closed set is introduced. Afterwards, several types of generalized version of fuzzy closed sets are introduced and studied. In [4], $fg\delta$ -closed set is introduced. Here we introduce fg^*s -closed set, the class of which is strictly larger than that of fg-closed set, but smaller than $fg\delta$ -closed set.

Lot of work has been done on quasi-coincidence and different weaker forms of closed and open sets. In this context, we have to mention [6, 11, 12, 13].

2. Preliminaries

Throughout this paper (X,τ) or simply by X we shall mean a fuzzy topological space (fts, for short) in the sense of Chang [5]. In [15], L. A. Zadeh introduced fuzzy set as follows: A fuzzy set A is a function from a non-empty set X into the closed interval I = [0, 1], i.e., $A \in I^X$. The support [15] of a fuzzy set A, denoted by supp A and is defined by $supp A = \{x \in X : A(x) \neq 0\}$. The fuzzy set with the singleton support $\{x\} \subseteq X$ and the value $t \ (0 < t < 1)$ will be denoted by x_t . 0_X and 1_X are the constant fuzzy sets taking values 0 and 1 respectively in X. The complement of a fuzzy set A in X is denoted by $1_X \setminus A$ and is defined by $(1_X \setminus A)(x) = 1 - A(x)$, for each $x \in X$ [15]. For any two fuzzy sets A, B in X, $A \leq B$ means $A(x) \leq B(x)$, for all $x \in X$ [15] while AqB means A is quasi-coincident (q-coincident, for short) with B, if there exists $x \in X$ such that A(x) + B(x) > 1 [10]. The negation of these two statements will be denoted by $A \not\leq B$ and $A \not q B$ respectively. For a fuzzy point x_t and a fuzzy set $A, x_t \in A$ means $A(x) \geq t$, i.e., $x_t \leq A$. For a fuzzy set A, clA and intA will stand for fuzzy closure [5] and fuzzy interior [5] of A respectively. A fuzzy set A is called a fuzzy neighbourhood (fuzzy nbd, for short) of a fuzzy point x_{α} if there exists a fuzzy open set U in X such that $x_{\alpha} \in U \leq A$ [10]. If, in addition, A is fuzzy open, then A is called fuzzy open nbd of x_{α} [10]. A fuzzy set A is called a fuzzy quasi neighbourhood (fuzzy q-nbd, for short) [10] of a fuzzy point x_{α} in an fts X if there is a fuzzy open set U in X such that $x_{\alpha}qU \leq A$. If, in addition, A is fuzzy open, then A is called fuzzy open q-nbd [10] of x_{α} . A fuzzy set A in X is called fuzzy regular open [1] (resp., fuzzy semiopen [1]) if A = int(clA) (resp., $A \leq cl(intA)$). The complement of a fuzzy semiopen set is called fuzzy semiclosed [1]. The intersection (resp., union) of all fuzzy semiclosed (resp., fuzzy semiopen) sets containing (resp., contained in) a fuzzy set A is called fuzzy semiclosure [1] (resp., fuzzy semiinterior [1]) of A, to be denoted by sclA (resp., sintA). The fuzzy δ -interior [7] of a fuzzy set A in X are defined as: $\delta intA = \bigvee \{W : W \text{ is fuzzy regular open in } X, W \leq A\}.$ The collection of all fuzzy semiopen (resp., fuzzy semiclosed) sets in an fts (X,τ) is denoted by FSO(X) (resp., FSC(X)).

2. fg^*s -Closed Set: Some Properties

In this section a new type of generalized version of fuzzy closed set is introduced which is in between fg-closed and $fg\delta$ -closed sets.

Definition 3.1. Let (X, τ) be an fts and $A \in I^X$. Then A is called fg^*s -closed set in X if $clsintA \leq U$ whenever $A \leq U \in \tau$.

The complement of fg^*s -closed set is called fg^*s -open set in X. The collection of all fg^*s -closed (resp., fg^*s -open) sets in an fts X is denoted by $FG^*SC(X)$ (resp., $FG^*SO(X)$).

Remark 3.2. Union and intersection of two fg^*s -closed sets may not be so, as it seen from the following examples.

Example 3.3. Let $X = \{a, b\}$, $\tau = \{0_X, 1_X, A, B\}$ where A(a) = 0.5, A(b) = 0.4, B(a) = B(b) = 0.3. Then (X, τ) is an fts. Here $FSO(X) = \{0_X, 1_X, U\}$ where $B \le U \le 1_X \setminus A$. Now consider two fuzzy sets C and D defined by C(a) = 0.5, C(b) = 0, D(a) = 0, D(b) = 0.3. Then clearly $C, D \in FG^*SC(X)$. Let $E = C \bigvee D$. Then E(a) = 0.5, E(b) = 0.3. Now $E \le A \in \tau$. But $clsintE = 1_X \setminus A \not\le A \Rightarrow E$ is not an fg^*s -closed set in (X, τ) .

Example 3.4. Let $X = \{a, b\}$, $\tau = \{0_X, 1_X, A, B\}$ where A(a) = 0.5, A(b) = 0.6, B(a) = 0.3, B(b) = 0.2. Then (X, τ) is an fts. Here $FSO(X) = \{0_X, 1_X, U, V\}$ where $A \leq U \leq 1_X \setminus B$, $B \leq V \leq 1_X \setminus A$. Now consider two fuzzy sets C and D defined by C(a) = 0.6, C(b) = 0.2, D(a) = 0.3, D(b) = 0.7. Clearly C and D are fg^*s -closed sets in (X, τ) . Let $E = C \setminus D$. Then E(a) = 0.3, E(b) = 0.2. Now $E \leq B \in \tau$. But $clsintE = 1_X \setminus A \nleq B \Rightarrow E$ is not an fg^*s -closed set in (X, τ) .

Note 3.5. So we can conclude that the set of all fg^*s -open sets in an $fts(X,\tau)$ does not form a fuzzy topology.

Theorem 3.6. Let (X, τ) be an fts and $A, B \in I^X$. If $A \leq B \leq clsintA$ and A is fg^*s -closed set in X, then B is also fg^*s -closed set in X.

Proof. Let $U \in \tau$ be such that $B \leq U$. Then by hypothesis, $A \leq B \leq U$. Since A is fg^*s -closed set in X, $clsintA \leq U$. Then $clsintA \leq clsintB \leq clsint(clsintA) \leq clsintA \leq U \Rightarrow B$ is fg^*s -closed set in X.

Theorem 3.7. Let (X, τ) be an fts and $A, B \in I^X$. If $intsclA \leq B \leq A$ and A is fg^*s -open set in X, then B is also fg^*s -open set in X.

Proof. $intsclA \leq B \leq A \Rightarrow 1_X \setminus A \leq 1_X \setminus B \leq 1_X \setminus intsclA = clsint(1_X \setminus A)$ where $1_X \setminus A$ is fg^*s -closed set in X. By Theorem 3.6, $1_X \setminus B$ is fg^*s -closed set in $X \Rightarrow B$ is fg^*s -open set in X.

Theorem 3.8. Let (X,τ) be an fts and $A \in I^X$. Then A is fg^*s -open set in X

iff $K \leq intsclA$ whenever $K \leq A$ and K is fuzzy closed set in (X, τ) .

Proof. Let $A \in I^X$ be fg^*s -open set in X and $K \leq A$ where K is fuzzy closed set in (X,τ) . Then $1_X \setminus A \leq 1_X \setminus K$ where $1_X \setminus A$ is fg^*s -closed set in X and $1_X \setminus K$ is fuzzy open set in (X,τ) . By hypothesis, $clsint(1_X \setminus A) \leq 1_X \setminus K \Rightarrow 1_X \setminus intsclA \leq 1_X \setminus K \Rightarrow K \leq intsclA$.

Conversely, let $K \leq intsclA$ whenever $K \leq A$, $K \in \tau^c$. Then $1_X \setminus A \leq 1_X \setminus K$ where $1_X \setminus K \in \tau$. By hypothesis, $1_X \setminus intsclA \leq 1_X \setminus K \Rightarrow clsint(1_X \setminus A) \leq 1_X \setminus K \Rightarrow 1_X \setminus A$ is fg^*s -closed set in $X \Rightarrow A$ is fg^*s -open set in X.

Theorem 3.9. Let (X, τ) be an fts and $A, B \in I^X$. If A is fg^*s -closed set in X and B is fuzzy closed set in (X, τ) with $A \not AB$. Then clsint $A \not AB$.

Proof. By hypothesis, $A / qB \Rightarrow A \leq 1_X \setminus B \in \tau \Rightarrow clsintA \leq 1_X \setminus B \Rightarrow clsintA / gB$.

Remark 3.10. The converse of Theorem 3.9 may not be true, in general, as it is seen from the following example.

Example 3.11. Consider Example 3.4. Here E is not fg^*s -closed set in X. Also $E \not h(1_X \setminus A)$ and $clsintE(=1_X \setminus A) \not h(1_X \setminus A)$.

Now we recall the following definitions from [2, 3, 4] for ready references.

Definition 3.12. Let (X, τ) be an fts and $A \in I^X$. Then A is called

- (i) fg-closed set [2,3] if $clA \leq U$ whenever $A \leq U \in \tau$,
- (ii) $fg\delta$ -closed set [4] if $cl\delta intA \leq U$ whenever $A \leq U \in \tau$.

Remark 3.13. It is clear from definitions that fg-closed set is fg*s-closed set which implies $fg\delta$ -closed set. But reverse implications are not necessarily true follow from the next examples.

Example 3.14. fg^*s -closed set $\Rightarrow fg$ -closed set

Let $X = \{a, b\}$, $\tau = \{0_X, 1_X, A\}$ where A(a) = 0.5, A(b) = 0.6. Then (X, τ) is an fts. Consider the fuzzy set B defined by B(a) = B(b) = 0.5. Then $B \le A \in \tau$. But $clB = 1_X \not\le A \Rightarrow B$ is not fg-closed set in X. But $clsintB = 0_X \le A \Rightarrow B$ is an fg^*s -closed set in X.

Example 3.15. $fg\delta$ -closed set $\Rightarrow fg^*s$ -closed set

Consider Example 3.3. Here E is not fg^*s -closed set in X. Now $cl\delta int E = 0_X \le A \Rightarrow E$ is $fg\delta$ -closed set in X.

Definition 3.16. An fts (X, τ) is called fT_{g^*s} -space (resp. fgT_{δ} -space [4]) if every fg^*s -closed (resp., $fg\delta$ -closed) set in X is fuzzy closed set in X.

Note 3.17. In fT_{q^*s} -space, every fg^*s -closed set is fg-closed set and in fgT_{δ} -

space, every fuzzy $fg\delta$ -closed set is fg^*s -closed.

Now we introduce a new type of generalized version of neighbourhood system in an fts.

Definition 3.18. Let (X,τ) be an fts and x_{α} , a fuzzy point in X. A fuzzy set A is called fg^*s -neighbourhood $(fg^*s$ -nbd, for short) of x_{α} , if there exists an fg^*s -open set U in X such that $x_{\alpha} \in U \leq A$. If, in addition, A is fg^*s -open set in X, then A is called an fg^*s -open nbd of x_{α} .

Definition 3.19. Let (X,τ) be an fts and x_{α} , a fuzzy point in X. A fuzzy set A is called fg^*s -quasi neighbourhood $(fg^*s$ -q-nbd, for short) of x_{α} if there is an fg^*s -open set U in X such that $x_{\alpha}qU \leq A$. If, in addition, A is fg^*s -open set in X, then A is called an fg^*s -open q-nbd of x_{α} .

Note 3.20. (i) It is clear from definitions that every fg^*s -open set is an fg^*s -open nbd of each of its points. But every fg^*s -nbd of a fuzzy point x_{α} may not be an fg^*s -open set containing x_{α} follows from the following example.

(ii) Also every fuzzy open nbd (resp., fuzzy open q-nbd) of a fuzzy point x_{α} is an fg^*s -open nbd (resp., fg^*s -open q-nbd) of x_{α} . But the converse is not necessarily true, in general, as it seen from the following example.

Example 3.21. Consider Example 3.14. Here B is fg^*s -open nbd of the fuzzy point $a_{0.4}$. But B is not fuzzy open nbd of $a_{0.4}$. Again B is fg^*s -open q-nbd of the fuzzy point $a_{0.6}$, but not a fuzzy open q-nbd of $a_{0.6}$.

Example 3.22. Consider Example 3.3 and the fuzzy set F defined by F(a) = F(b) = 0.5 and the fuzzy point $a_{0.4}$. Clearly F is fg^*s -closed as well as fg^*s -open set with $a_{0.4} \in F \leq 1_X \setminus E \notin FG^*SO(X)$. So $1_X \setminus E$ is an fg^*s -nbd of $a_{0.4}$ though it is not an fg^*s -open nbd of $a_{0.4}$.

4. fg^*s -Open and fg^*s -Closed Functions

In this section we first introduce fg^*s -closure operator which is seem to be an idempotent operator. Using this operator as a basic tool, we introduce and characterize fg^*s -open and fg^*s -closed functions, the classes of which are strictly larger than that of fuzzy open [14] and fuzzy closed [14] functions respectively.

Definition 4.1. Let (X, τ) be an fts and $A \in I^X$. Then fg^*s -closure and fg^*s -interior of A, denoted by $fg^*scl(A)$ and $fg^*sint(A)$, are defined as follows:

$$fg^*scl(A) = \bigwedge \{F : A \leq F, F \text{ is } fg^*s\text{-closed set in } X\},$$

 $fg^*sint(A) = \bigvee \{G : G \leq A, G \text{ is } fg^*s\text{-open set in } X\}.$

Remark 4.2. It is clear from definition that for any $A \in I^X$, $A \leq fg^*scl(A)$. If A is fg^*s -closed set in an fts X, then $A = fg^*scl(A)$. Similarly, $fg^*sint(A) \leq A$.

If A is fg^*s -open set in an fts X, then $A = fg^*sint(A)$. Again by Remark 3.2, we conclude that $fg^*scl(A)$ (resp., $fg^*sint(A)$) may not be fg^*s -closed (resp., fg^*s -open) set in an fts X.

Theorem 4.3. Let (X, τ) be an fts and $A \in I^X$. Then for a fuzzy point x_t in X, $x_t \in fg^*scl(A)$ if and only if every fg^*s -open q-nbd U of x_t , UqA.

Proof. Let $x_t \in fg^*scl(A)$ for any fuzzy set A in an fts X and F be any fg^*s -open q-nbd of x_t . Then $x_tqF \Rightarrow x_t \notin 1_X \setminus F$ which is fg^*s -closed set in X. Then by Definition 4.1, $A \not\leq 1_X \setminus F \Rightarrow$ there exists $y \in X$ such that $A(y) > 1 - F(y) \Rightarrow AqF$.

Conversely, let for every fg^*s -open q-nbd F of x_t , FqA. If possible, let $x_t \not\in fg^*scl(A)$. Then by Definition 4.1, there exists an fg^*s -closed set U in X with $A \leq U$, $x_t \notin U$. Then $x_tq(1_X \setminus U)$ which being fg^*s -open set in X is fg^*s -open q-nbd of x_t . By assumption, $(1_X \setminus U)qA \Rightarrow (1_X \setminus A)qA$, a contradiction.

Theorem 4.4. Let (X, τ) be an fts and $A, B \in I^X$. Then the following statements are true:

- $(i) fg^*scl(0_X) = 0_X,$
- $(ii) fg^*scl(1_X) = 1_X,$
- (iii) $A \leq B \Rightarrow fg^*scl(A) \leq fg^*scl(B)$,
- $(iv) \ fg^*scl(A \bigvee B) = fg^*scl(A) \bigvee fg^*scl(B),$
- (v) $fg^*scl(A \wedge B) \leq fg^*scl(A) \wedge fg^*scl(B)$, equality does not hold, in general, (vi) $fg^*scl(fg^*scl(A)) = fg^*scl(A)$.

Proof. (i), (ii) and (iii) are obvious.

(iv) From (iii), $fg^*scl(A) \bigvee fg^*scl(B) \leq fg^*scl(A \bigvee B)$.

To prove the converse, let $x_{\alpha} \in fg^*scl(A \vee B)$. Then by Theorem 4.3, for any fg^*s -open set U in X with $x_{\alpha}qU$, $Uq(A \vee B) \Rightarrow$ there exists $y \in X$ such that $U(y) + max\{A(y), B(y)\} > 1 \Rightarrow$ either U(y) + A(y) > 1 or $U(y) + B(y) > 1 \Rightarrow$ either UqA or $UqB \Rightarrow$ either $x_{\alpha} \in fg^*scl(A)$ or $x_{\alpha} \in fg^*scl(B) \Rightarrow x_{\alpha} \in fg^*scl(A) \vee fg^*scl(B)$.

- (v) Follows from (iii) and equality does not hold, in general follows from Example 3.4.
- (vi) Since $A \leq fg^*scl(A)$, for any $A \in I^X$, $fg^*scl(A) \leq fg^*scl(fg^*scl(A))$ (by (iii)).

Conversely, let $x_{\alpha} \in fg^*scl(fg^*scl(A)) = fg^*scl(B)$ where $B = fg^*scl(A)$. Let U be any fg^*s -open set in X with $x_{\alpha}qU$. Then UqB implies that there exists $y \in X$ such that U(y) + B(y) > 1. Let B(y) = t. Then y_tqU and $y_t \in B = fg^*scl(A) \Rightarrow UqA \Rightarrow x_{\alpha} \in fg^*scl(A) \Rightarrow fg^*scl(fg^*scl(A)) \leq fg^*scl(A)$. Consequently, $fg^*scl(fg^*scl(A)) = fg^*scl(A)$.

Theorem 4.5. Let (X,τ) be an fts and $A \in I^X$. Then the following statements

hold:

(i) $fg^*scl(1_X \setminus A) = 1_X \setminus fg^*sint(A)$

(ii) $fg^*sint(1_X \setminus A) = 1_X \setminus fg^*scl(A)$.

Proof. (i). Let $x_t \in fg^*scl(1_X \setminus A)$ for a fuzzy set A in an fts (X, τ) . If possible, let $x_t \notin 1_X \setminus fg^*sint(A)$. Then $1 - (fg^*sint(A))(x) < t \Rightarrow [fg^*sint(A)](x) + t > 1 \Rightarrow fg^*sint(A)qx_t \Rightarrow$ there exists at least one fg^*s -open set $F \leq A$ with $x_tqF \Rightarrow x_tqA$. As $x_t \in fg^*scl(1_X \setminus A)$, $Fq(1_X \setminus A) \Rightarrow Aq(1_X \setminus A)$, a contradiction. Hence

$$fg^*scl(1_X \setminus A) \le 1_X \setminus fg^*sint(A)...(1)$$

Conversely, let $x_t \in 1_X \setminus fg^*sint(A)$. Then $1 - [(fg^*sint(A)](x) \geq t \Rightarrow x_t \not A(fg^*sint(A)) \Rightarrow x_t \not AF$ for every fg^*s -open set F contained in A ... (2). Let U be any fg^*s -closed set in X such that $1_X \setminus A \leq U$. Then $1_X \setminus U \leq A$. Now $1_X \setminus U$ is fg^*s -open set in X contained in A. By (2), $x_t \not A(1_X \setminus U) \Rightarrow x_t \in U \Rightarrow x_t \in fg^*scl(1_X \setminus A)$ and so

$$1_X \setminus fg^*sint(A) \le fg^*scl(1_X \setminus A)...(3).$$

Combining (1) and (3), (i) follows.

(ii) Putting $1_X \setminus A$ for A in (i), we get $fg^*scl(A) = 1_X \setminus fg^*sint(1_X \setminus A) \Rightarrow fg^*sint(1_X \setminus A) = 1_X \setminus fg^*scl(A)$.

Let us now recall the following definitions from [3, 4, 14] for ready references.

Definition 4.6. A function $f: X \to Y$ is called

(i) fuzzy open [14] (resp., fuzzy closed [14]) if f(U) is fuzzy open (resp., fuzzy closed) set in Y for every fuzzy open (resp., fuzzy closed) set U in X,

(ii) fg-open [3] (fg-closed [3]) if f(U) is fg-open (resp., fg-closed) set in Y for every fuzzy open (resp., fuzzy closed) set U in X,

(iii) $fg\delta$ -open [4] $(fg\delta$ -closed [4]) if f(U) is $fg\delta$ -open (resp., $fg\delta$ -closed) in Y for every fuzzy open (resp., fuzzy closed) set U in X.

Now we introduce the following concept.

Definition 4.7. A function $h: X \to Y$ is called fg^*s -open function if h(U) is fg^*s -open set in Y for every fuzzy open set U in X.

Remark 4.8. It is clear from definitions that

- (i) fuzzy open function is fg^*s -open function,
- (ii) fg-open function is fg*s-open function,
- (iii) fg^*s -open function is $fg\delta$ -open function.

But the converses need not be true, in general, as it is evidenced from the following examples.

Example 4.9. (i) fg^*s -open function $\not\Rightarrow$ fuzzy open function, fg-open function Let $X = \{a,b\}$, $\tau_1 = \{0_X,1_X,B\}$, $\tau_2 = \{0_X,1_X,A\}$ where A(a) = 0.5, A(b) = 0.6, B(a) = B(b) = 0.5. Then (X,τ_1) and (X,τ_2) are fts's. Consider the identity function $i:(X,\tau_1)\to (X,\tau_2)$. Now $B\in\tau_1, i(B)=B\leq A\in\tau_2$. Now $cl_{\tau_2}sint_{\tau_2}B=0_X< A\Rightarrow B\in FG^*SC(X,\tau_2)\Rightarrow 1_X\setminus B=B\in FG^*SO(X,\tau_2)\Rightarrow i$ is an fg^*s -open function. But $B\not\in\tau_2\Rightarrow i$ is not fuzzy open function. Also $cl_{\tau_2}B=1_X\not\leq A\Rightarrow B$ is not fg-closed as well as fg-open set in $(X,\tau_2)\Rightarrow i$ is not an fg-open function.

(ii) $fg\delta$ -open function $\not\Rightarrow fg^*s$ -open function Let $X = \{a,b\}$, $\tau_1 = \{0_X,1_X,E\}$, $\tau_2 = \{0_X,1_X,A,B\}$ where A(a) = 0.5, A(b) = 0.4, B(a) = B(b) = 0.3, E(a) = 0.5, E(b) = 0.7. Then (X,τ_1) and (X,τ_2) are fts's. Consider the identity function $i:(X,\tau_1)\to (X,\tau_2)$. Here $E\in\tau_1, i(E)=E$. Now $1_X\setminus E\in\tau_1^c, i(1_X\setminus E)=1_X\setminus E< A\in\tau_2$. But $cl_{\tau_2}sint_{\tau_2}(1_X\setminus E)=1_X\setminus A\not\leq A\Rightarrow 1_X\setminus E\not\in FG^*SC(X,\tau_2)\Rightarrow E\not\in FG^*SO(X,\tau_2)\Rightarrow i$ is not fg^*s -open function. Now $cl_{\tau_2}\delta int_{\tau_2}(1_X\setminus E)=0_X< A\Rightarrow 1_X\setminus E$ is $fg\delta$ -closed and so E is $fg\delta$ -open set in $(X,\tau_2)\Rightarrow i$ is an $fg\delta$ -open function.

Theorem 4.10. For a bijective function $h: X \to Y$, the following statements are equivalent:

- (i) h is fg^*s -open,
- (ii) $h(intA) \leq fg^*sint(h(A))$, for all $A \in I^X$,
- (iii) for each fuzzy point x_{α} in X and each fuzzy open set U in X containing x_{α} , there exists an fg^*s -open set V in Y containing $h(x_{\alpha})$ such that $V \leq h(U)$.
- **Proof.** (i) \Rightarrow (ii). Let $A \in I^X$. Then intA is a fuzzy open set in X. By (i), h(intA) is fg^*s -open set in Y. Since $h(intA) \leq h(A)$ and $fg^*sint(h(A))$ is the union of all fg^*s -open sets contained in h(A), we have $h(intA) \leq fg^*sint(h(A))$.
- (ii) \Rightarrow (i). Let U be any fuzzy open set in X. Then $h(U) = h(intU) \leq fg^*sint(h(U))$ (by (ii)) $\Rightarrow h(U)$ is fg^*s -open set in $Y \Rightarrow h$ is fg^*s -open function.
- (ii) \Rightarrow (iii). Let x_{α} be a fuzzy point in X, and U, a fuzzy open set in X such that $x_{\alpha} \in U$. Then $h(x_{\alpha}) \in h(U) = h(intU) \leq fg^*sint(h(U))$ (by (ii)). Then h(U) is fg^*s -open set in Y. Let V = h(U). Then $h(x_{\alpha}) \in V$ and $V \leq h(U)$.
- (iii) \Rightarrow (i). Let U be any fuzzy open set in X and y_{α} , any fuzzy point in h(U), i.e., $y_{\alpha} \in h(U)$. Then there exists unique $x \in X$ such that h(x) = y (as h is bijective). Then $[h(U)](y) \geq \alpha \Rightarrow U(h^{-1}(y)) \geq \alpha \Rightarrow U(x) \geq \alpha \Rightarrow x_{\alpha} \in U$. By (iii), there exists fg^*s -open set V in Y such that $h(x_{\alpha}) \in V$ and $V \leq h(U)$. Then $h(x_{\alpha}) \in V = fg^*sint(V) \leq fg^*sint(h(U))$. Since y_{α} is taken arbitrarily and h(U) is the union of all fuzzy points in h(U), $h(U) \leq fg^*sint(h(U)) \Rightarrow h(U)$ is fg^*s -open set in $Y \Rightarrow h$ is an fg^*s -open function.

Theorem 4.11. If $h: X \to Y$ is fg^*s -open, bijective function, then the following

statements are true:

(i) for each fuzzy point x_{α} in X and each fuzzy open q-nbd U of x_{α} in X, there exists an fg^*s -open q-nbd V of $h(x_{\alpha})$ in Y such that $V \leq h(U)$,

(ii) $h^{-1}(fg^*scl(B)) \le cl(h^{-1}(B))$, for all $B \in I^Y$.

Proof. (i) Let x_{α} be a fuzzy point in X and U be any fuzzy open q-nbd of x_{α} in X. Then $x_{\alpha}qU = intU \Rightarrow h(x_{\alpha})qh(intU) \leq fg^*sint(h(U))$ (by Theorem 4.10 (i) \Rightarrow (ii)) implies that there exists at least one fg^*s -open q-nbd V of $h(x_{\alpha})$ in Y with $V \leq h(U)$.

(ii) Let x_{α} be any fuzzy point in X such that $x_{\alpha} \notin cl(h^{-1}(B))$ for any $B \in I^{Y}$. Then there exists a fuzzy open q-nbd U of x_{α} in X such that $U \not h^{-1}(B)$. Now

$$h(x_{\alpha})qh(U)...(1)$$

where h(U) is fg^*s -open set in Y. Now $h^{-1}(B) \leq 1_X \setminus U$ which is a fuzzy closed set in $X \Rightarrow B \leq h(1_X \setminus U)$ (as h is injective) $\leq 1_Y \setminus h(U) \Rightarrow B \not h(U)$. Let $V = 1_Y \setminus h(U)$. Then $B \leq V$ which is fg^*s -closed set in Y. We claim that $h(x_\alpha) \notin V$. If possible, let $h(x_\alpha) \in V = 1_Y \setminus h(U)$. Then $1 - [h(U)](h(x)) \geq \alpha \Rightarrow h(U) \not h(x_\alpha)$, contradicting (1). So $h(x_\alpha) \notin V \Rightarrow h(x_\alpha) \notin fg^*scl(B) \Rightarrow x_\alpha \notin h^{-1}(fg^*scl(B)) \Rightarrow h^{-1}(fg^*scl(B)) \leq cl(h^{-1}(B))$.

Theorem 4.12. An injective function $h: X \to Y$ is fg^*s -open if and only if for each $B \in I^Y$ and F, a fuzzy closed set in X with $h^{-1}(B) \leq F$, there exists an fg^*s -closed set V in Y such that $B \leq V$ and $h^{-1}(V) \leq F$.

Proof. Let $B \in I^Y$ and F, a fuzzy closed set in X with $h^{-1}(B) \leq F$. Then $1_X \setminus h^{-1}(B) \geq 1_X \setminus F$ where $1_X \setminus F$ is a fuzzy open set in $X \Rightarrow h(1_X \setminus F) \leq h(1_X \setminus h^{-1}(B)) \leq 1_Y \setminus B$ (as h is injective) where $h(1_X \setminus F)$ is an fg^*s -open set in Y. Let $V = 1_Y \setminus h(1_X \setminus F)$. Then V is fg^*s -closed set in Y such that $B \leq V$. Now $h^{-1}(V) = h^{-1}(1_Y \setminus h(1_X \setminus F)) = 1_X \setminus h^{-1}(h(1_X \setminus F)) \leq F$.

Conversely, let F be a fuzzy open set in X. Then $1_X \setminus F$ is a fuzzy closed set in X. We have to show that h(F) is an fg^*s -open set in Y. Now $h^{-1}(1_Y \setminus h(F)) \leq 1_X \setminus F$ (as h is injective). By assumption, there exists an fg^*s -closed set V in Y such that

$$1_Y \setminus h(F) \leq V...(1)$$

and $h^{-1}(V) \leq 1_X \setminus F$. Therefore, $F \leq 1_X \setminus h^{-1}(V)$ implies that

$$h(F) \le h(1_X \setminus h^{-1}(V)) \le 1_Y \setminus V...(2)$$

(as h is injective). Combining (1) and (2), $h(F) = 1_Y \setminus V$ which is an fg^*s -open set in Y. Hence h is fg^*s -open function.

Definition 4.13. A function $h: X \to Y$ is called fg^*s -closed function if h(A) is

 fg^*s -closed set in Y for each fuzzy closed set A in X.

Remark 4.14. It is clear from definitions that

- (i) fuzzy closed function is fg^*s -closed function,
- (ii) fg-closed function is fg*s-closed function,
- (iii) fg^*s -closed function is $fg\delta$ -closed function.

But the converses need not be true, as it is evidenced from the following examples.

Example 4.15. (i) fg^*s -closed function $\not\Rightarrow$ fuzzy closed function, fg-closed function.

Consider Example 4.9(i). Here i is not fuzzy closed function as well as fg-closed function, as $B = 1_X \setminus B \in \tau_1^c$, $i(B) \notin \tau_2^c$ and $cl_{\tau_2}B \nleq A$. But as $B \in \tau_1^c \Rightarrow i(B) \in FG^*SC(X, \tau_2)$, i is fg^*s -closed function.

(ii) $fg\delta$ -closed function $\not\Rightarrow fg^*s$ -closed function

Consider Example 4.9(ii). Here $1_X \setminus E \in \tau_1^c$ and $i(1_X \setminus E) = 1_X \setminus E \notin FG^*SC(X, \tau_2)$ $\Rightarrow i$ is not fg^*s -closed function. But $1_X \setminus E$ is $fg\delta$ -closed set in $(X, \tau_2) \Rightarrow i fg\delta$ -closed function.

Theorem 4.16. A bijective function $h: X \to Y$ is fg^*s -closed function if and only if $fg^*scl(h(A)) \le h(clA)$, for all $A \in I^X$.

Proof. Let us suppose that $h: X \to Y$ be an fg^*s -closed function and $A \in I^X$. Then h(cl(A)) is fg^*s -closed set in Y. Since $h(A) \le h(clA)$ and $fg^*scl(h(A))$ is the intersection of all fg^*s -closed sets in Y containing h(A), we have $fg^*scl(h(A)) \le h(clA)$.

Conversely, let for any $A \in I^X$, $fg^*scl(h(A)) \leq h(clA)$. Let U be any fuzzy closed set in X. Then $h(U) = h(clU) \geq fg^*scl(h(U)) \Rightarrow h(U)$ is an fg^*s -closed set in $Y \Rightarrow h$ is an fg^*s -closed function.

Theorem 4.17. If $h: X \to Y$ is an fg^*s -closed bijective function, then the following statements hold:

- (i) for each fuzzy point x_{α} in X and each fuzzy closed set U in X with x_{α} /qU, there exists an fg^*s -closed set V in Y with $h(x_{\alpha})$ /qV such that $V \geq h(U)$,
- (ii) $h^{-1}(fg^*sint(B)) \ge int(h^{-1}(B))$, for all $B \in I^Y$.
- **Proof.** (i). Let x_{α} be a fuzzy point in X and U be any fuzzy closed set in X with $x_{\alpha} \not hU = clU \Rightarrow h(x_{\alpha}) \not hh(clU) \geq fg^*scl(h(U))$ (by Theorem 4.16) $\Rightarrow h(x_{\alpha}) \not hV$ for some fg^*s -closed set V in Y with $V \geq h(U)$.
- (ii). Let $B \in I^Y$ and x_{α} be any fuzzy point in X such that $x_{\alpha} \in int(h^{-1}(B))$. Then there exists a fuzzy open set U in X with $U \leq h^{-1}(B)$ such that $x_{\alpha} \in U$. Then $1_X \setminus U \geq 1_X \setminus h^{-1}(B) \Rightarrow h(1_X \setminus U) \geq h(1_X \setminus h^{-1}(B))$ where $h(1_X \setminus U)$ is an fg^*s -closed set in Y. Let $V = 1_Y \setminus h(1_X \setminus U)$. Then V is an fg^*s -open set in Y and $V = 1_Y \setminus h(1_X \setminus U) \leq 1_Y \setminus h(1_X \setminus h^{-1}(B)) \leq 1_Y \setminus (1_Y \setminus B) = B$ (as h is injective).

Now $U(x) \ge \alpha \Rightarrow x_{\alpha} \not h(1_X \setminus U) \Rightarrow h(x_{\alpha}) \not h(1_X \setminus U) \Rightarrow h(x_{\alpha}) \le 1_Y \setminus h(1_X \setminus U) = V \Rightarrow h(x_{\alpha}) \in V = fg^*sint(V) \le fg^*sint(B) \Rightarrow x_{\alpha} \in h^{-1}(fg^*sint(B)).$ Since x_{α} is taken arbitrarily, $int(h^{-1}(B)) \le h^{-1}(fg^*sint(B))$, for all $B \in I^Y$.

Remark 4.18. Composition of two fg^*s -closed (resp., fg^*s -open) functions need not be so, as it is evidenced from the following example.

Example 4.19. Let $X = \{a, b\}$, $\tau_1 = \{0_X, 1_X, E\}$, $\tau_2 = \{0_X, 1_X\}$, $\tau_3 = \{0_X, 1_X, A, B\}$ where A(a) = 0.5, A(b) = 0.4, B(a) = B(b) = 0.3, E(a) = 0.5, E(b) = 0.7. Then (X, τ_1) , (X, τ_2) and (X, τ_3) are fts's. Consider two identity functions $i_1 : (X, \tau_1) \to (X, \tau_2)$ and $i_2 : (X, \tau_2) \to (X, \tau_3)$. Clearly i_1 and i_2 are fg^*s -closed as well as fg^*s -open functions. Let $i_3 = i_2 \circ i_1 : (X, \tau_1) \to (X, \tau_3)$. We claim that i_3 is not fg^*s -closed function. Now $E \in \tau_1, 1_X \setminus E \in \tau_1^c$, $(i_2 \circ i_1)(1_X \setminus E) = 1_X \setminus E \le A \in \tau_3$. But $cl_{\tau_3}sint_{\tau_3}(1_X \setminus E) = 1_X \setminus A \not\leq A \Rightarrow 1_X \setminus E$ is not an fg^*s -closed set in $(X, \tau_3) \Rightarrow i_2 \circ i_1$ is not an fg^*s -closed function. Again as $1_X \setminus E \not\in FG^*SC(X, \tau_3) \Rightarrow E \not\in FG^*SO(X, \tau_3) \Rightarrow i_2 \circ i_1$ is not fg^*s -open function.

Theorem 4.20. If $h_1: X \to Y$ is fuzzy closed (resp., fuzzy open) function and $h_2: Y \to Z$ is fg^*s -closed (resp., fg^*s -open) function, then $h_2 \circ h_1: X \to Z$ is fg^*s -closed (resp., fg^*s -open) function.

Proof. Obvious.

5. fg^*s - T_2 Space and Some Applications of fg^*s -Open Function

In this section we first introduce a new type of separation axiom and then some applications of fg^*s -open function are established.

We first recall the definition and theorem from [8, 9] for ready references.

Definition 5.1. [8] An fts (X, τ) is called fuzzy T_2 -space if for any two distinct fuzzy points x_{α} and y_{β} ; when $x \neq y$, there exist fuzzy open sets U_1, U_2, V_1, V_2 such that $x_{\alpha} \in U_1, y_{\beta}qV_1, U_1$ $\not qV_1$ and $x_{\alpha}qU_2, y_{\beta} \in V_2, U_2$ $\not qV_2$; when x = y and $\alpha < \beta$ (say), there exist fuzzy open sets U and V in X such that $x_{\alpha} \in U, y_{\beta}qV$ and U $\not qV$.

Theorem 5.2. [9] An fts (X, τ) is fuzzy T_2 -space if and only if for any two distinct fuzzy points x_{α} and y_{β} in X; when $x \neq y$, there exist fuzzy open sets U, V in X such that $x_{\alpha}qU$, $y_{\beta}qV$ and U/qV; when x = y and $\alpha < \beta$ (say), x_{α} has a fuzzy open nbd U and y_{β} has a fuzzy open q-nbd V such that U/qV.

Now we introduce the following concept.

Definition 5.3. An fts (X, τ) is called fg^*s - T_2 -Space if for any two distinct fuzzy points x_{α} and y_{β} in X; when $x \neq y$, there exist fg^*s -open sets U, V in X such that $x_{\alpha}qU$, $y_{\beta}qV$ and $U\not qV$; when x = y and $\alpha < \beta$ (say), x_{α} has an fg^*s -open nbd U and y_{β} has an fg^*s -open q-nbd V such that $U\not qV$.

Remark 5.4. Clearly fuzzy T_2 -space is fg^*s - T_2 -space, but the converse is not nec-

essarily true, follows from the following example.

Example 5.5. Let $X = \{a, b\}$, $\tau = \{0_X, 1_X\}$. Then (X, τ) is an fts. Clearly (X, τ) is not a fuzzy T_2 -space. Here every fuzzy set in (X, τ) is fg^*s -open set in (X, τ) . Clearly it is fg^*s - T_2 -space.

Theorem 5.6. If a bijective function $h: X \to Y$ is fg^*s -open function from a fuzzy T_2 -space X onto an fts Y, then Y is fg^*s - T_2 -space.

Proof. Let z_{α} and w_{β} be two fuzzy points in Y. Since h is bijective, there exist unique x, y in X such that h(x) = z, h(y) = w, i.e., $h(x_{\alpha}) = z_{\alpha}, h(y_{\beta}) = w_{\beta}$.

Case I. Suppose $z \neq w$. Then $x \neq y$. Since X is fuzzy T_2 -space, there exist fuzzy open sets U, V in X such that $x_{\alpha}qU, y_{\beta}qV$ and U/qV. Then $h(x_{\alpha})(=z_{\alpha})qh(U), h(y_{\beta})(=w_{\beta})qV$ and h(U)/qh(V) where h(U) and h(V) are fg^*s -open sets in Y as h is an fg^*s -open function [Indeed, $h(U)qh(V) \Rightarrow$ there exists $t \in Y$ such that $[h(U)](t) + [h(V)](t) > 1 \Rightarrow U(h^{-1}(t)) + V(h^{-1}(t)) > 1$ where $h^{-1}(t) \in X \Rightarrow UqV$, a contradiction].

Case II. Suppose z=w and $\alpha<\beta$ (say). Then x=y and $\alpha<\beta$. Since X is fuzzy T_2 -space, there exist a fuzzy open nbd U of x_{α} and a fuzzy open q-nbd V of y_{β} such that U $\not qV$. Then $h(x_{\alpha}) \in h(U)$, $h(y_{\beta})qh(V)$ and h(U) $\not qh(V)$ where h(U), h(V) are fg^*s -open sets in Y, i.e., h(U) is an fg^*s -open nbd of z_{α} , h(V) is an fg^*s -open q-nbd of w_{β} and h(U) $\not qh(V)$. Consequently, Y is fg^*s - T_2 -space.

In a similarly manner we can prove the following theorem easily.

Theorem 5.7. If a bijective function $h: X \to Y$ is fg^*s -open function from a fuzzy T_2 -space X onto an fT_{g^*s} -space Y, then Y is fuzzy T_2 -space.

6. Conclusion

Introducing a new type of generalized version of fuzzy closed set, here we study a new type of fuzzy open and fuzzy closed-like functions. Our next approach is to define some sort of fuzzy continuous-like functions and also new type of fuzzy separation axioms and fuzzy compactness. The applications of these types of functions are to be established.

Acknowledgement

I express my sincere gratitude to the reviewers for their valuable remark on this paper.

References

- [1] Azad, K. K., On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl., 82 (1981), 14-32.
- [2] Balasubramanian, G. and Sundaram, P., On some generalizations of fuzzy continuous functions, Fuzzy Sets and Systems, 86 (1997), 93-100.

- [3] Bhattacharyya, Anjana, $fg^*\alpha$ -continuous functions in fuzzy topological spaces, International Journal of Scientific and Engineering Research, Vol. 4, Issue 8 (2013), 973-979.
- [4] Bhattacharyya, Anjana, $fg\delta$ -closed set and $fg\delta$ -continuity, Bull. Cal. Math. Soc., Vol. 115, No. 4 (2023), 409-444.
- [5] Chang, C. L., Fuzzy topological spaces, J. Math. Anal. Appl., Vol. 24 (1968), 182-190.
- [6] Dutta, A. and Tripathy, B. C., On fuzzy b- θ -open sets in fuzzy topological space, Journal of Intelligent and Fuzzy Systems, Vol. 32, No. 1 (2017), 137-139.
- [7] Ganguly, S. and Saha, S., A note on δ -continuity and δ -connected sets in fuzzy set theory, Simon Stevin, Vol. 62 (1988), 127-141.
- [8] Hutton, B. and Reilly, I., Separation axioms in fuzzy topological spaces, Fuzzy Sets and Systems, Vol. 31 (1980), 93-104.
- [9] Mukherjee, M. N. and Ghosh, B., On nearly compact and θ -rigid fuzzy sets in fuzzy topological spaces, Fuzzy Sets and Systems, Vol. 43 (1991), 57-68.
- [10] Pu, Pao Ming and Liu, Ying Ming, Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore-Smith Convergence, J. Math Anal. Appl., Vol. 76 (1980), 571-599.
- [11] Ray, G. C. and Tripathy, B. C., On fuzzy δ^* -almost continuous and fuzzy δ^* -continuous functions in mixed fuzzy topological spaces, Proyecciones J. Math., Vol. 39, No. 2 (2020), 435-449.
- [12] Sharma, D. J. and Tripathy, B. C., Fuzzy semi-pre quasi neighbourhood structure, Afrika Matematika, Vol. 30, No. 1-2 (2019), 217-221.
- [13] Tripathy, B. C. and Ray, G. C., Fuzzy δ -I-continuity in mixed fuzzy ideal topological spaces, Journal of Applied Analysis, Vol. 24, No. 2 (2018), 233-239.
- [14] Wong, C. K., Fuzzy points and local properties of fuzzy topology, J. Math. Anal. Appl., Vol. 46 (1974), 316-328.
- [15] Zadeh, L. A., Fuzzy Sets, Inform. Control, Vol. 8 (1965), 338-353.

This page intentionally left blank.